Neural Signatures of Trust in Human-Robot Collaboration: A Tale of Two Use-Cases

Aakash Yadav, Sarah Hopko, and Ranjana K. Mehta Industrial and Systems Engineering, Texas A&M University

Aakash a second-year Ph.D. candidate in the at Texas A&M University. His research interests span human-robot interaction, neuroergonomics, and affective computing.

() nimrobotics.com

Background

At present

- Manufacturing encompasses 12% of US economy
- Traditional assembly lines are either manual or completely automated

HRC allows for

- Improved team fluency with complementary skill set • New possible interaction
- modes and collaboration

Challenges

- Improved teaming requires human factors considerations, such as trust
- Operator safety is critical as robots are not 100% reliable

Subjective Responses

Methods

Participants

- Sixteen (age 25.12 \pm 3.31 years) and thirty-eight (age 25.37 \pm 5.7 years) subjects in study 1 and 2
- Both the studies were approved by the local IRB (IRB2020-0097DCR and IRB2020-0432F)

Study

Experimental Task 1

- S-shaped metal surface polishing task
- 3-axis end effector control using joystick
- Autonomous takeover during turns

Perturbations include

- Reduction in speed
- Loss of surface contact Joystick command stops \bullet

Experimental protocol

Trial 2

-Consent Form - Background Survey Propensity to Trust Survey **Bioinstrumentation & Baseline** Familiarization and Practice Trials Trial 1 1-pt Trust

1-pt Trust

Brain Activations

Straight turn by automatic lacksquarecontrol

Experimental Task 2

- Planetary gear assembly task
- The robot delivers parts in sequence of assembly
- Perturbations include
- Sudden change in speed
- Wrong delivery sequence
- Invasion of human space •

- Debriefing

Results

Functional connectivity Study 1 Study 2 Unreliable trials Reliable trials Unreliable trials Reliable trials PFC PFC PFC PFC PMMC PMMC PMMC PMMC VC VC VC VC

- RMMSD_{reliable} < RMMSD_{unreliable}
- HF_{reliable} < Hf_{unreliable}
- LF_{reliable} <Lf_{unreliable} \bullet
- Mean HR_{reliable} > Mean HR_{unreliable}

Key takeaways

- Subjective response were \bullet similar in both the studies
- Perturbations in robot trajectory was able to induce distrust in the robot
- Different neural mechanisms were active due to the inherent task difference
- Subjective responses belies the internal state of the human. They did not change with change in neural activity.
- HRV can only resolve trusting attitudes in relatively static tasks.

No significant difference was observed in study 2

Future work: closed loop robot adaptation

Acknowledgements

This work was supported by the NSF

under Grant 1900704 and SecureAmerica

Institute Grant 28-235950-00001.

