

Human-Systems Integration for Future of Work

Sarah Hopko¹, Ranjana K. Mehta^{1, 2}, Prabhakar Pagilla² ¹Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX ²Department of Mechanical Engineering, Texas A&M University, College Station, TX

Human-Systems Integration

Across Applications

Industry 4.0 increased AI, sensors, robots' capabilities and fear of worker displacement

Exoskeletons

Pertinent Human Factors

Considerations

We need Human-centered Automation/Al

Technology

Repeatability Endurance Computational Capacity Strength Uniformity

Human

Flexibility Improvisation Creative Decision Making Situation Awareness Sensing Capabilities

Poor Under Uncertainty Costly Hazardous

Human Error Slower Speed Fatigue Motivation

Collaboration can mitigate weakness or enhance strengths

INTEGRATE human & systems rather than **REPLACE** humans

Semi-Autonomous Vehicles

Collaborative Robots

Drones

Artificial Intelligence

Aviation

- ↓ Safety
- 1 Liability
- User Satisfaction

Augmented or Virtual Reality Support

Training

Real-Time Monitoring

Adaptive Visual Displays & Alerts

Adaptive Task Allocations

Improved Human-System Fluency

Support & Augment Human Capabilities

nilitary surgical

Ergonomics

Workload

Ignoring human factors

The National Academies of SCIENCES ENGINEERING MEDICINE National Institute for Occupational Safety and Health

