Differential Effects of tDCS on Visuospatial Working Memory Performance under Fatigue

PRESENTER: Reed Smoot

BACKGROUND: Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex is known to promote WM, however, its efficacy against fatigue-related performance declines remains uncertain.

METHODS

- 1. Sixty minute visuospatial WM task
- 2. Thirty two participants, within subjects
- 3. Treatment: Control, sham, or anodal tDCS
- 4. Stim: 1mA, 10 minutes, 20th minute
- 5. Stratification: HI or LO acc. at baseline

- 1x1 tDCS

- Cathode over the r-SO
- Anode over the I-dIPFC
- Sponge electrode (5x7 cm)

RESULTS

- HI and LO WM individuals are differentially influenced by anodal tDCS, with the latter making steeper accuracy gains.
- tDCS benefits do not alter the subjective perceptions of fatigue in either group.

The benefits of non-invasive brain stimulation during a fatiguing working memory exercise are regulated by baseline ability.

Take a picture to download the full paper

Two-back WM task

Accuracy by condition

Rohith Karthikeyan, Meredith Reed Smoot, Ranjana K. Mehta

TEXAS A&M UNIVERSITY®

