Analysis of Cognitive Load in Personalized Emergency Medical Training Using Augmented Reality

Isabella Pedron Ashley Bailly Connor Barnes

PURPOSE: To determine the efficacy of Augmented Reality (AR) based training which may help address current EMS training limitations.

BACKGROUND: AR and video training have been used to teach skills across a variety of tasks, but its effects on cognitive load and performance on a work-related AR interface remains understudied.

METHODS
1. 51 participants (6 missing/noisy data)
 - < 1 hour of AR/VR experience
 - 51% female
2. Training and evaluation of 4 augmented reality interactions
 - **Training group:** AR-based (n=22) and video-based (n=23)
3. **Metrics:** Performance, subjective surveys, physiological responses
4. **Two-way ANOVA:** Training Group (AR vs Video) x Gender (Male vs Female)

RESULTS
- **HRV**
 - No significant differences for AvgHR and LF/HF.
 - In training, RMSSD was higher in AR than video during Poke (p=0.013) and Raycast (p=0.03).
 - In evaluation, interaction effect of RMSSD on Scroll (p=0.03) but no significant differences for both group and gender.
- **EDA:** Collected data was not reliable enough to draw relevant conclusions.

EVALUATION
- AR training resulted in higher intrinsic load, while extraneous and germane remained comparable between groups.

PERFORMANCE
- Performance, indicated by time of completion, was comparable across groups and gender, except for scrolling, where females performed better.

ACKNOWLEDGEMENTS
- Texas A&M University: Lindsey Brenner, Shivangi Dwivedi, John Hayes
- Virginia Tech (VT) University: Dr. Joe Gabbard, Cassidy Nelson, Kyle Tanous

Ashley Bailly, Connor Barnes, Isabella Pedron, Ranjana K. Mehta